Timo Grossenbacher
Presentation available under grssnbchr.github.io/zrug-rddj
Formerly: MSc in Geography & Computer Science UZH
Mar - Oct 2014: Tages-Anzeiger
Since Nov 2014 I work in the team of SRF Data as coder and journalist ("journocoder")
Some examples
More: research & ideas, less: service center
pitch ideas, receive / collect / scrape / enforce (BGÖ) data
preprocess > visualize > analyze > find the story
publication on srf.ch -> overview, interactivity
publication in radio and/or TV -> anecdotes, details, aspects
Dual-use goods & conventional arms exports
R is a Swiss Army Knife > it reads all kinds of weird s**t
R allows for automation > example
R empowers reproducibility and, ultimately, transparency > we publish most of our analyses on GitHub
base
, dplyr
, tidyr
, maggritr
, ggplot2
, extrafont
, animation
, readxl
, xml2
, jsonlite
, RSQLite
, googlesheets
, stringr
, rpremraj/mailR
, R2HTML
, knitr
, slidify
, readr
, caret
, sp
, maptools
, etc.
Error reporting in RStudio - in general, the console in RStudio
The plethora of packages doesn't make it better (jsonlite
, rjson
, RJSONIO
). You still need to use list()
and complicated lapply()
calls to produce nested data structures - and JSON is all about nested data structures.
What about something like that?
my_dataset %>% group_by(facet) %>% to_json("output.json")
The language... especially Standard Evaluation vs. Non-Standard Evaluation ... and stuff like paste()
or paste0()
.
direct_matches %<>% mutate_(.dots =
setNames(
list(
interp(~ as.numeric(sub("\\D*(\\d+).*",
"\\1", a)),
a = as.name(combined))),
combined
)
)
rddj.info - a resource collection for doing DDJ with R
Algorithmic Accountibility
@grssnbchr or timo.grossenbacher(at)srf.ch
This presentation is available (and reproducible) under github.com/grssnbchr/zrug-rddj